If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+20x=30
We move all terms to the left:
5x^2+20x-(30)=0
a = 5; b = 20; c = -30;
Δ = b2-4ac
Δ = 202-4·5·(-30)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{10}}{2*5}=\frac{-20-10\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{10}}{2*5}=\frac{-20+10\sqrt{10}}{10} $
| 20x+5=3x+92 | | 2(x+4)=2(-8-8)-2x | | 110+70+y-y=180 | | 30/45=18x | | X-y+110=180 | | 4x+5=29-2x | | 10/3+1=4/3x+5 | | -4x-2=5-2x | | 6y-5=-58 | | -4x^2-16x+16=0 | | 2x+35=3x+36 | | 2x+52=4x+14 | | P(x)=(60x-0.3x^2)-(5x+15) | | Z+2i=0 | | 1/2x+5=-3x+2 | | 37+4k=5 | | 180=123+(x+2x) | | 8p+43=19 | | (3x)(x)=58 | | 15a^2-9a=0 | | x-5)(7x-21)=0 | | 8n(5n+13=7 | | 2x-5x+7=2x-2 | | 180=4x-1+5x-13+5x-13 | | 180=4x-1+4x-1+5x-13 | | Y=3.1x+35 | | 65+x=103 | | 81=12t+5t^2 | | 16+8a=-4a+-32 | | 2x-30=1x+10 | | 180=5x-7+5x-7+2x+62 | | 2x^2+5=-45 |